为了不被踢出AI的队伍,视觉深度模型都开始“接私活”了
再比如,通过智能摄像头将零售商超中的人群分布和动线转化为图像,进行分析和检测,可以判断出不同社区的需求和消费特征,从而有针对性地进行选品和陈设,进一步提升坪效。或者是通过汽车行驶轨迹来预测和优化不同时段的路况及定价。 总而言之,目前计算机视觉模型早已从实验室和科学家案头,帮助越来越多的现实问题寻找解决方案。 由此也可以看出,在AI落地中并不缺成熟、可落地的算法,大开脑洞的创造力才是最难的。 当然也有隐患 作为一个负责任的“AI吹”,故事显然不能在“AI好AI妙AI呱呱叫”中戛然而止。 虽然计算机视觉表现出了极大的适应性,但在实际应用时,有一些缺点是其本身也没有解决的, 这也导致很长一段时间内,图像识别、生成等应用还能被当做展示人工智能的神奇能力而被夸耀着。 首先,是视觉神经网络对于图像变化和背景过于敏感。无论是转换非视数据,还是直接训练原始图片,机器视觉的处理逻辑都是将图像转换为系统可理解的“数字”,再进行对比和识别。因此,将背景和变化等噪音识别成其他物体也就不足为奇了。 (在照片中增加不同的物体,会影响照片中原有的猴子的识别结果) 既然是通过视觉模型进行训练,那就需要大量有标注的高质量数据,而在现实应用中,一些非图像的原始数据,比如用户鼠标习惯、零售店动向等等,包含了多个维度、不同数量的数据点,不仅标记数据集的工作耗时耗力,而且训练这些庞大的数据也需要大量的GPU资源。 但遗憾的是,受标注质量、模型准确率、专业领域知识等影响,最终的成果在真实世界中的体验也可能非常糟糕。想要让商业机构冒着投资打水漂的风险进行尝试,恐怕还有很多工作要做。 更何况,视觉深度模型并不是一种放之四海而皆准的解决方案,有些任务是难以进行视觉化标注,或者实现成本很高的,短时期内也只能望AI兴叹了。 总而言之,视觉深度学习模型的成熟和非视觉场景的试探,给AI开发带来了新的故事和想象力,比起千箱一面的智能语音、人手一个的人脸识别,更令人惊喜,实用性也值得期待。 不过本质上讲,一切技术问题最后都是经济学问题。只要不计成本,总能搞得出来。《三体》中,秦始皇不也用三千万大军搞出了能计算太阳运行轨道的人形计算机队列吗? 这也和如今的人工智能产业现状悄然重合,技术不是关键性问题,没钱又不会搞工程的项目,就别让AI背锅了吧…… 更多精彩内容,关注钛媒体微信号(ID:taimeiti),或者下载钛媒体App (编辑:温州站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |