加入收藏 | 设为首页 | 会员中心 | 我要投稿 温州站长网 (https://www.0577zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 服务器 > 搭建环境 > Linux > 正文

Linux后台开发必知的io优化知识汇总

发布时间:2022-02-16 18:17:16 所属栏目:Linux 来源:互联网
导读:系统学习 IO性能对于一个系统的影响是至关重要的。一个系统经过多项优化以后,瓶颈往往落在数据库;而数据库经过多种优化以后,瓶颈最终会落到IO。而IO性能的发展,明显落后于CPU的发展。Memchached也好,NoSql也好,这些流行技术的背后都在直接或者间接地
  系统学习
 
  IO性能对于一个系统的影响是至关重要的。一个系统经过多项优化以后,瓶颈往往落在数据库;而数据库经过多种优化以后,瓶颈最终会落到IO。而IO性能的发展,明显落后于CPU的发展。Memchached也好,NoSql也好,这些流行技术的背后都在直接或者间接地回避IO瓶颈,从而提高系统性能。
 
  IO系统的分层:
 
 
 
  上图层次比较多,但总的就是三部分。磁盘(存储)、VM(卷管理)和文件系统。专有名词不好理解,打个比方说:磁盘就相当于一块待用的空地;LVM相当于空地上的围墙(把空地划分成多个部分);文件系统则相当于每块空地上建的楼房(决定了有多少房间、房屋编号如何,能容纳多少人住);而房子里面住的人,则相当于系统里面存的数据。
 
  文件系统—数据如何存放?
 
  对应了上图的File System和Buffer Cache。
 
  File System(文件系统):解决了空间管理的问题,即:数据如何存放、读取。
 
  Buffer Cache:解决数据缓冲的问题。对读,进行cache,即:缓存经常要用到的数据;对写,进行buffer,缓冲一定数据以后,一次性进行写入。
 
  VM—磁盘空间不足了怎么办?
 
  对应上图的Vol Mgmt。
 
  VM其实跟IO没有必然联系。他是处于文件系统和磁盘(存储)中间的一层。VM屏蔽了底层磁盘对上层文件系统的影响。当没有VM的时候,文件系统直接使用存储上的地址空间,因此文件系统直接受限于物理硬盘,这时如果发生磁盘空间不足的情况,对应用而言将是一场噩梦,不得不新增硬盘,然后重新进行数据复制。而VM则可以实现动态扩展,而对文件系统没有影响。另外,VM也可以把多个磁盘合并成一个磁盘,对文件系统呈现统一的地址空间,这个特性的杀伤力不言而喻。
 
  存储—数据放在哪儿?如何访问?如何提高IO速度?
 
  对应上图的Device Driver、IO Channel和Disk Device
 
  数据最终会放在这里,因此,效率、数据安全、容灾是这里需要考虑的问题。而提高存储的性能,则可以直接提高物理IO的性能
 
  2. Logical IO vs Physical IO
 
  逻辑IO是操作系统发起的IO,这个数据可能会放在磁盘上,也可能会放在内存(文件系统的Cache)里。
 
  物理IO是设备驱动发起的IO,这个数据最终会落在磁盘上。
 
  逻辑IO和物理IO不是一一对应的。
 
  这部分的东西在网络编程经常能看到,不过在所有IO处理中都是类似的。
 
  IO请求的两个阶段:
 
  等待资源阶段:IO请求一般需要请求特殊的资源(如磁盘、RAM、文件),当资源被上一个使用者使用没有被释放时,IO请求就会被阻塞,直到能够使用这个资源。
 
  使用资源阶段:真正进行数据接收和发生。
 
  举例说就是排队和服务。
 
  在等待数据阶段,IO分为阻塞IO和非阻塞IO。
 
  阻塞IO:资源不可用时,IO请求一直阻塞,直到反馈结果(有数据或超时)。
 
  非阻塞IO:资源不可用时,IO请求离开返回,返回数据标识资源不可用
 
  在使用资源阶段,IO分为同步IO和异步IO。
 
  同步IO:应用阻塞在发送或接收数据的状态,直到数据成功传输或返回失败。
 
  异步IO:应用发送或接收数据后立刻返回,数据写入OS缓存,由OS完成数据发送或接收,并返回成功或失败的信息给应用。
 
 
 
  按照Unix的5个IO模型划分
 
  阻塞IO
 
  非阻塞IO
 
  IO复用
 
  信号驱动的IO
 
  异步IO
 
  从性能上看,异步IO的性能无疑是最好的。
 
  各种IO的特点
 
  阻塞IO:使用简单,但随之而来的问题就是会形成阻塞,需要独立线程配合,而这些线程在大多数时候都是没有进行运算的。
 
  非阻塞IO:采用轮询方式,不会形成线程的阻塞。
 
  同步IO:同步IO保证一个IO操作结束之后才会返回,因此同步IO效率会低一些,但是对应用来说,编程方式会简单。
 
  异步IO:由于异步IO请求只是写入了缓存,从缓存到硬盘是否成功不可知,因此异步IO相当于把一个IO拆成了两部分,一是发起请求,二是获取处理结果。因此,对应用来说增加了复杂性。但是异步IO的性能是所有很好的,而且异步的思想贯穿了IT系统放放面面。
 
  最重要的三个指标
 
  IOPS
 
  IOPS,即每秒钟处理的IO请求数量。IOPS是随机访问类型业务(OLTP类)很重要的一个参考指标。
 
  一块物理硬盘能提供多少IOPS?
 
  从磁盘上进行数据读取时,比较重要的几个时间是:寻址时间(找到数据块的起始位置),旋转时间(等待磁盘旋转到数据块的起始位置),传输时间(读取数据的时间和返回的时间)。其中寻址时间是固定的(磁头定位到数据的存储的扇区即可),旋转时间受磁盘转速的影响,传输时间受数据量大小的影响和接口类型的影响(不用硬盘接口速度不同),但是在随机访问类业务中,他的时间也很少。因此,在硬盘接口相同的情况下,IOPS主要受限于寻址时间和传输时间。以一个15K的硬盘为例,寻址时间固定为4ms,传输时间为60s/15000*1/2=2ms,忽略传输时间。1000ms/6ms=167个IOPS。
 
  OS的一次IO请求对应物理硬盘一个IO吗?
 
  在没有文件系统、没有VM(卷管理)、没有RAID、没有存储设备的情况下,这个答案还是成立的。但是当这么多中间层加进去以后,这个答案就不是这样了。物理硬盘提供的IO是有限的,也是整个IO系统存在瓶颈的最大根源。所以,如果一块硬盘不能提供,那么多块在一起并行处理,这不就行了吗?确实是这样的。可以看到,越是高端的存储设备的cache越大,硬盘越多,一方面通过cache异步处理IO,另一方面通过盘数增加,尽可能把一个OS的IO分布到不同硬盘上,从而提高性能。文件系统则是在cache上会影响,而VM则可能是一个IO分布到多个不同设备上(Striping)。
 
  所以,一个OS的IO在经过多个中间层以后,发生在物理磁盘上的IO是不确定的。可能是一对一个,也可能一个对应多个。
 
  IOPS能算出来吗?
 
  对单块磁盘的IOPS的计算没有没问题,但是当系统后面接的是一个存储系统时、考虑不同读写比例,IOPS则很难计算,而需要根据实际情况进行测试。主要的因素有:存储系统本身有自己的缓存。缓存大小直接影响IOPS,理论上说,缓存越大能cache的东西越多,在cache命中率保持的情况下,IOPS会越高。
 
  RAID级别。不同的RAID级别影响了物理IO的效率。
 
  读写混合比例。对读操作,一般只要cache能足够大,可以大大减少物理IO,而都在cache中进行;对写操作,不论cache有多大,最终的写还是会落到磁盘上。因此,100%写的IOPS要越狱小于100%的读的IOPS。同时,100%写的IOPS大致等同于存储设备能提供的物理的IOPS。
 
  一次IO请求数据量的多少。一次读写1KB和一次读写1MB,显而易见,结果是完全不同的。
 
  当时上面N多因素混合在一起以后,IOPS的值就变得扑朔迷离了。所以,一般需要通过实际应用的测试才能获得。
 
  IO Response Time
 
  即IO的响应时间。IO响应时间是从操作系统内核发出一个IO请求到接收到IO响应的时间。因此,IO Response time除了包括磁盘获取数据的时间,还包括了操作系统以及在存储系统内部IO等待的时间。一般看,随IOPS增加,因为IO出现等待,IO响应时间也会随之增加。对一个OLTP系统,10ms以内的响应时间,是比较合理的。下面是一些IO性能示例:
 
  一个8K的IO会比一个64K的IO速度快,因为数据读取的少些。
 
  一个64K的IO会比8个8K的IO速度快,因为前者只请求了一个IO而后者是8个IO。
 
  串行IO会比随机IO快,因为串行IO相对随机IO说,即便没有Cache,串行IO在磁盘处理上也会少些操作。
 
  需要注意,IOPS与IO Response Time有着密切的联系。一般情况下,IOPS增加,说明IO请求多了,IO Response Time会相应增加。但是会出现IOPS一直增加,但是IO Response Time变得非常慢,超过20ms甚至几十ms,这时候的IOPS虽然还在提高,但是意义已经不大,因为整个IO系统的服务时间已经不可取。
 
  Throughput
 
  为吞吐量。这个指标衡量标识了最大的数据传输量。如上说明,这个值在顺序访问或者大数据量访问的情况下会比较重要。尤其在大数据量写的时候。
 
  吞吐量不像IOPS影响因素很多,吞吐量一般受限于一些比较固定的因素,如:网络带宽、IO传输接口的带宽、硬盘接口带宽等。一般他的值就等于上面几个地方中某一个的瓶颈。
 
  一些概念
 
  IO Chunk Size
 
  即单个IO操作请求数据的大小。一次IO操作是指从发出IO请求到返回数据的过程。IO Chunk Size与应用或业务逻辑有着很密切的关系。比如像Oracle一类数据库,由于其block size一般为8K,读取、写入时都此为单位,因此,8K为这个系统主要的IO Chunk Size。IO Chunk Size小,考验的是IO系统的IOPS能力;IO Chunk Size大,考验的时候IO系统的IO吞吐量。
 
  Queue Deep
 
  熟悉数据库的人都知道,SQL是可以批量提交的,这样可以大大提高操作效率。IO请求也是一样,IO请求可以积累一定数据,然后一次提交到存储系统,这样一些相邻的数据块操作可以进行合并,减少物理IO数。而且Queue Deep如其名,就是设置一起提交的IO请求数量的。一般Queue Deep在IO驱动层面上进行配置。
 
  Queue Deep与IOPS有着密切关系。Queue Deep主要考虑批量提交IO请求,自然只有IOPS是瓶颈的时候才会有意义,如果IO都是大IO,磁盘已经成瓶颈,Queue Deep意义也就不大了。一般来说,IOPS的峰值会随着Queue Deep的增加而增加(不会非常显著),Queue Deep一般小于256。
 
  随机访问(随机IO)、顺序访问(顺序IO)
 
  随机访问的特点是每次IO请求的数据在磁盘上的位置跨度很大(如:分布在不同的扇区),因此N个非常小的IO请求(如:1K),必须以N次IO请求才能获取到相应的数据。
 
  顺序访问的特点跟随机访问相反,它请求的数据在磁盘的位置是连续的。当系统发起N个非常小的IO请求(如:1K)时,因为一次IO是有代价的,系统会取完整的一块数据(如4K、8K),所以当第一次IO完成时,后续IO请求的数据可能已经有了。这样可以减少IO请求的次数。这也就是所谓的预取。
 
  随机访问和顺序访问同样是有应用决定的。如数据库、小文件的存储的业务,大多是随机IO。而视频类业务、大文件存取,则大多为顺序IO。
 
  选取合理的观察指标:
 
  以上各指标中,不用的应用场景需要观察不同的指标,因为应用场景不同,有些指标甚至是没有意义的。
 
  随机访问和IOPS: 在随机访问场景下,IOPS往往会到达瓶颈,而这个时候去观察Throughput,则往往远低于理论值。
 
  顺序访问和Throughput:在顺序访问的场景下,Throughput往往会达到瓶颈(磁盘限制或者带宽),而这时候去观察IOPS,往往很小。
 
 
 
 
 
  文件系统各有不同,其最主要的目标就是解决磁盘空间的管理问题,同时提供高效性、安全性。如果在分布式环境下,则有相应的分布式文件系统。Linux上有ext系列,Windows上有Fat和NTFS。如图为一个linux下文件系统的结构。
 
  其中VFS(Virtual File System)是Linux Kernel文件系统的一个模块,简单看就是一个Adapter,对下屏蔽了下层不同文件系统之间的差异,对上为操作系统提供了统一的接口.
 
  中间部分为各个不同文件系统的实现。
 
  再往下是Buffer Cache和Driver。
 
 
 
  文件系统的结构
 
  各种文件系统实现方式不同,因此性能、管理性、可靠性等也有所不同。下面为Linux Ext2(Ext3)的一个大致文件系统的结构。
 
 
 
  Boot Block存放了引导程序。
 
  Super Block存放了整个文件系统的一些全局参数,如:卷名、状态、块大小、块总数。他在文件系统被mount时读入内存,在umount时被释放。
 
 
 
  上图描述了Ext2文件系统中很重要的三个数据结构和他们之间的关系。
 
  Inode:Inode是文件系统中最重要的一个结构。如图,他里面记录了文件相关的所有信息,也就是我们常说的meta信息。包括:文件类型、权限、所有者、大小、atime等。Inode里面也保存了指向实际文件内容信息的索引。其中这种索引分几类:
 
  直接索引:直接指向实际内容信息,公有12个。因此如果,一个文件系统block size为1k,那么直接索引到的内容最大为12k
 
  间接索引
 
  两级间接索引
 
  三级间接索引
 
  如图:
 
 
 
  Directory代表了文件系统中的目录,包括了当前目录中的所有Inode信息。其中每行只有两个信息,一个是文件名,一个是其对应的Inode。需要注意,Directory不是文件系统中的一个特殊结构,他实际上也是一个文件,有自己的Inode,而它的文件内容信息里面,包括了上面看到的那些文件名和Inode的对应关系。如下图:
 
 
 
  Data Block即存放文件的时间内容块。Data Block大小必须为磁盘的数据块大小的整数倍,磁盘一般为512字节,因此Data Block一般为1K、2K、4K。
 
  Buffer Cache
 
  Buffer & Cache
 
  虽然Buffer和Cache放在一起了,但是在实际过程中Buffer和Cache是完全不同了。Buffer一般对于写而言,也叫“缓冲区”,缓冲使得多个小的数据块能够合并成一个大数据块,一次性写入;Cache一般对于读而且,也叫“缓存”,避免频繁的磁盘读取。如图为Linux的free命令,其中也是把Buffer和Cache进行区分,这两部分都算在了free的内存。
 
 
 
  Buffer Cache
 
  Buffer Cache中的缓存,本质与所有的缓存都是一样,数据结构也是类似,下图为VxSF的一个Buffer Cache结构。
 
 
 
  这个数据结构与memcached和Oracle SGA的buffer何等相似。左侧的hash chain完成数据块的寻址,上方的的链表记录了数据块的状态。
 
  Buffer vs Direct I/O
 
  文件系统的Buffer和Cache在某些情况下确实提高了速度,但是反之也会带来一些负面影响。一方面文件系统增加了一个中间层,另外一方面,当Cache使用不当、配置不好或者有些业务无法获取cache带来的好处时,cache则成为了一种负担。
 
  适合Cache的业务:串行的大数据量业务,如:NFS、FTP。
 
  不适合Cache的业务:随机IO的业务。如:Oracle,小文件读取。
 
  块设备、字符设备、裸设备
 
  这几个东西看得很晕,找了一些资料也没有找到很准确的说明。
 
  从硬件设备的角度来看,
 
  块设备就是以块(比如磁盘扇区)为单位收发数据的设备,它们支持缓冲和随机访问(不必顺序读取块,而是可以在任何时候访问任何块)等特性。块设备包括硬盘、CD-ROM 和 RAM 盘。

(编辑:温州站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读