最近加州大学伯克利分校的研究人员开始用计算机视觉和强化学习教算法学习YouTube视频上的杂耍视频。在无需人工标记姿势的情况下,计算机仿真角色就能重复视频里面的动作。而且还能在新环境中应用学到的技能。
从促进频谱共享到资产监控乃至于天线的优化设计,AI正在开始改变电信。
电信网络优化是一组改进延时、贷款、设计或者架构的技术,任何以有利的方式增强数据流的东西都算。对通信服务提供商来说,优化会直接转化为更好的客户体验。
除了带宽限制之外,通信面临的最大挑战之一是网络时延。类似手机AR/VR这样的应用只有在时延极低的情况下才好用。
苹果最近被授予了一项专利,就是用机器学习来组建“预期网络”,预计像智能手机这样的无线设备在未来可能会执行什么样的操作,从而提前下载数据包以降低时延。
机器学习的另一项新兴应用是频谱共享。
频谱共享是解决频率资源短缺的必然之道。FCC(美国联邦通信委员会)要求,3.5到3.7GHz频段必须由不同用户共享。也就是说运营商可基于可用性动态访问共享的频谱,从而可以根据网络需求对带宽进行调整。而没有获得专用频谱许可的较小商业用户也可以访问。
像Federated Wireless这样的公司提供了Secure Spectrum Access(SAS,安全频谱访问)来动态分配频谱给不同等级的用户,确保不会造成干扰。
2018年,Federated Wireless被授予了一项专利,该专利运用了机器学习技术来对无线信号进行分类,同时又隐藏了联邦信号的特征,从而避免被黑客利用。
DARPA则希望最终能从SAS转到完全基于ML的自动化系统。为此它在2016年推出了鼓励参赛者想出自主协作动态分配频谱办法的Spectrum Collaboration Challenge。并在2017年推出了Radio Frequency Machine Learning Systems,跟Federated Wireless的方案类似,DARPA也是希望用ML区分不同类型的信号。
电信玩家也准备将基于AI的解决方案整合进下一代无线通信技术,也就是5G当中。
三星为了应对5G时代的到来而收购了基于AI的网络与服务分析初创企业Zhilabs,称其软件将用于分析用户流量,对应用进行分类,改善整体服务质量。
高通则把AI边缘计算看作其5G计划的关键部分。
还有一些研究论文开始探索用神经网络来设计最优化的天线。
无人车
尽管无人车市场商机无限,但何时实现全自动尚不明朗。
大量技术巨头和初创企业正在这个领域拼得头破血流。
这个领域最富盛名的是Google。其Waymo已经在率先部署了无人车商业车队。
投资者的投资热度依然没有消退。去年GM的Cruise Automation就拿到了10多亿美元的融资,Zoox也融了5亿美元。其他的初创企业还包括Drive.ai、Pony.ai与Nuro等。
(编辑:温州站长网)
【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!